Polynomial/Rational Approximation of Minkowski Sum Boundary Curves 1
نویسندگان
چکیده
Given two planar curves, their convolution curve is defined as the set of all vector sums generated by all pairs of curve points which have the same curve normal direction. The Minkowski sum of two planar objects is closely related to the convolution curve of the two object boundary curves. That is, the convolution curve is a superset of the Minkowski sum boundary. By eliminating all redundant parts in the convolution curve, one can generate the Minkowski sum boundary. The Minkowski sum can be used in various important geometric computations, especially for collision detection among planar curved objects. Unfortunately, the convolution curve of two rational curves is not rational, in general. Therefore, in practice, one needs to approximate the convolution curves with polynomial/rational curves. Conventional approximation methods of convolution curves typically use piecewise linear approximations, which is not acceptable in many CAD systems due to data proliferation. In this paper, we generalize conventional approximation techniques of offset curves and develop several new methods for approximating convolution curves. Moreover, we introduce efficient methods to estimate the error in convolution curve approximation. This paper also discusses various other important issues in the boundary construction of the Minkowski sum. c © 1998 Academic Press
منابع مشابه
Polynomial/Rational Approximation of Minkowski Sum Boundary Curves
Given two planar curves, their convolution curve is defined as the set of all vector sums generated by all pairs of curve points which have the same curve normal direction. The Minkowski sum of two planar objects is closely related to the convolution curve of the two object boundary curves. That is, the convolution curve is a superset of the Minkowski sum boundary. By eliminating all redundant ...
متن کاملOn rational Minkowski Pythagorean hodograph curves
Minkowski Pythagorean hodograph curves are polynomial curves with polynomial speed, measured with respect to Minkowski norm. Curves of this special class are particularly well suited for representing medial axis transforms of planar domains. In the present paper we generalize this polynomial class to a rational class of curves in Minkowski 3-space. We show that any rational Minkowski Pythagorea...
متن کاملConic Approximation of Convolution Curve
Given two planar curves, a convolution curve is computed by applying vector sums to all pairs of curve points which have the same curve normal direction. The convolution curve can be used to compute Minkowski sum of two planar objects which is important in various geometric computations such as collision detection and font design. In this paper, we present an algorithm to generate a conic appro...
متن کاملA method to obtain the best uniform polynomial approximation for the family of rational function
In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...
متن کاملThe best uniform polynomial approximation of two classes of rational functions
In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.
متن کامل